top of page

Polarization independent FP tunable filter

  • Ibrahim Abdulhalim
  • Aug 29, 2021
  • 1 min read

Updated: 18 hours ago

Liquid crystal Fabry–Perot tunable filters are investigated in detail, with special attention to their manufacturability, design, tolerances, and polarization independence.

Transmission spectra of a polarization-independent Fabry–Pérot tunable filter showing wavelength tuning at different incident angles

Abstract


Liquid crystal Fabry–Perot tunable filters are investigated in detail, with special attention to their manufacturability, design, tolerances, and polarization independence. The calculations were performed both numerically and analytically using the 4×4 propagation matrix method. A simplified analytic expression for the propagation matrix is derived for the case of nematic LC in the homogeneous geometry. At normal incidence, it is shown that one can use the 2×2 Abeles matrix method; however, at oblique incidence, the 4×4 matrix method is needed. The effects of dephasing originating from wedge or noncollimated light beams are investigated. Due to the absorption of the indium tin oxide layer and as an electrode, its location within the mirror multilayered stack is very important. The optimum location is found to be within the stack and not on its top or bottom. Finally, we give more detailed experimental results of our polarization-independent configuration that uses polarization diversity with a Wollaston prism.


© 2014 Optical Society of America


Read the Full Research Article


👉Investigation of liquid crystal Fabry–Perot tunable filters: design, fabrication, and polarization independence: https://www.osapublishing.org/ao/abstract.cfm?uri=ao-53-29-H91

Comments


bottom of page